|簡體中文

比思論壇

 找回密碼
 按這成為會員
搜索



查看: 478|回復: 0
打印 上一主題 下一主題

筛选2亿种化合物 机器学习发现数百种潜在新冠药物

[複製鏈接]

90

主題

0

好友

436

積分

中學生

Rank: 3Rank: 3

  • TA的每日心情
    開心
    14 小時前
  • 簽到天數: 816 天

    [LV.10]以壇為家III

    推廣值
    0
    貢獻值
    4
    金錢
    215
    威望
    436
    主題
    90

    簽到勳章 簽到達人 回文勇士

    樓主
    發表於 2020-8-20 09:17:52
    国际战“疫”行动  科技日报北京8月13日电 (记者刘霞)据美国每日科学网站12日报道,美国科学家借助一种强大的机器学习方法,通过筛选约2亿种化学物质,发现了数百种新冠肺炎候选药物。
      该研究负责人、加州大学河滨分校教授安南达桑卡·雷解释说,这一药物发现平台是一种与人工智能有关的计算机算法,可通过反复试错学习预测药物的活性,其预测能力还能不断改进,“对于系统性发现治疗新冠肺炎新药而言,此类平台是重要的第一步”。
      在研究中,团队成员乔尔·科瓦列夫斯基用到了与新冠病毒蛋白相互作用的65种人类蛋白的配体,并为每种人类蛋白生成了机器学习模型,这些模型经过训练,可从其3D结构中识别出新配体。
      研究团队使用这些机器学习模型,从包含2亿种化学物质的数据库中筛选出了1000多万种小分子,并确定了能最有效靶向与新冠病毒蛋白相互作用的65种人类蛋白的化合物。他们从这些化合物中鉴定出了已经获得美国食品药品管理局(FDA)批准的化合物,例如一些药品和食品中使用的化合物。他们还使用机器学习模型计算了各种化合物的毒性,这有助于摒弃潜在的有毒候选物。
      研究人员表示,这种方法不仅使他们鉴定出对单个人类蛋白靶标具有最显著活性的候选药物,还发现了一些有望抑制两个或多个人类蛋白靶标的化学物。
      雷说:“最令我兴奋的是那些可能会挥发的化合物,这为吸入疗法带来了惊喜。”
      研究人员认为,传统依赖细胞培养测定的方法很昂贵,而且可能需要数年时间对药物进行测试,与之相比,他们的机器学习平台在初步筛查大量化学物质方面具有优势。而且,该平台不仅能用于研发抗新冠肺炎药物,还能加速其他多种疾病药物的研发进程。

    重要聲明:本論壇是以即時上載留言的方式運作,比思論壇對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,讀者及用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,讀者及用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本論壇受到「即時上載留言」運作方式所規限,故不能完全監察所有留言,若讀者及用戶發現有留言出現問題,請聯絡我們比思論壇有權刪除任何留言及拒絕任何人士上載留言 (刪除前或不會作事先警告及通知 ),同時亦有不刪除留言的權利,如有任何爭議,管理員擁有最終的詮釋權。用戶切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,敬請自律。本網站保留一切法律權利。

    手機版| 廣告聯繫

    GMT+8, 2024-11-18 18:15 , Processed in 0.020887 second(s), 30 queries , Gzip On.

    Powered by Discuz! X2.5

    © 2001-2012 Comsenz Inc.

    回頂部